翻訳と辞書
Words near each other
・ Kruzenshtern (ship)
・ Kruzgamepa River
・ Kruzhka
・ Kruzno (board game)
・ Kruzof Island
・ Kruzy, Podlaskie Voivodeship
・ Kruzy, Warmian-Masurian Voivodeship
・ Krućevići
・ Kručov
・ Kruśliwiec
・ Krušar
・ Krušce
・ Krušeani
・ Kruskal's tree theorem
・ Kruskal–Katona theorem
Kruskal–Szekeres coordinates
・ Kruskal–Wallis one-way analysis of variance
・ Kruspe
・ Krust
・ Krustenyatsite
・ Krustets
・ Krustpils Castle
・ Krustpils Municipality
・ Krustpils parish
・ Krustpils Station
・ Krustpils–Rēzekne II Railway
・ Krusty (disambiguation)
・ Krusty (music group)
・ Krusty Gets Busted
・ Krusty Gets Kancelled


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kruskal–Szekeres coordinates : ウィキペディア英語版
Kruskal–Szekeres coordinates

In general relativity Kruskal–Szekeres coordinates, named after Martin Kruskal and George Szekeres, are a coordinate system for the Schwarzschild geometry for a black hole. These coordinates have the advantage that they cover the entire spacetime manifold of the maximally extended Schwarzschild solution and are well-behaved everywhere outside the physical singularity.
==Definition==

Kruskal–Szekeres coordinates are defined, from the Schwarzschild coordinates (t,r,\theta,\phi), by replacing ''t'' and ''r'' by a new time coordinate ''T'' and a new spatial coordinate ''X'':
:T = \left(\frac - 1\right)^e^\sinh\left(\frac\right)
:X = \left(\frac - 1\right)^e^\cosh\left(\frac\right)
for the exterior region r>2GM, and:
:T = \left(1 - \frac\right)^e^\cosh\left(\frac\right)
:X = \left(1 - \frac\right)^e^\sinh\left(\frac\right)
for the interior region 0. Note ''GM'' is the gravitational constant multiplied by the Schwarzschild mass parameter, and this article is using units where ''c'' = 1.
It follows that the Schwarzschild ''r'', in terms of Kruskal–Szekeres coordinates, is implicitly given by:
:T^2 - X^2 = \left(1-\frac\right)e^
or using the Lambert W function as:
:\frac = 1 + W \left( \frac \right).
In these new coordinates the metric of the Schwarzschild black hole manifold is given by
:ds^ = \frace^(-dT^2 + dX^2) + r^2 d\Omega^2,
written using the (− + + +) metric signature convention and where the angular component of the metric (the line element of the 2-sphere) is:
:d\Omega^2\ \stackrel\ d\theta^2+\sin^2\theta\,d\phi^2
The location of the event horizon (''r'' = 2''GM'') in these coordinates is given by T = \plusmn X\,. Note that the metric is perfectly well defined and non-singular at the event horizon. The curvature singularity is located at T^2 - X^2 = 1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kruskal–Szekeres coordinates」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.